
mtm^ .11 ll|  lUffll    win P^|WWWW^»|IW^W»"»^^^^ 

O 

ALGORITHMS TO REVEAL PROPERTIES OF FLOATING-POINT 

ARITHMETIC 

BY 

MICHAELA. MALCOLM 

STAN-CS-71-211 

MARCH, 1971 

DISTRIBUTION STATEMENT A 

Approved for public release; 
Distribution Unlimited 

Reproduced by 
NATIONAL TECHNICAL 
INFORMATION SERVICE 

Springfield, V»     IWtSl 

COMPUTER   SCIENCE   DEPARTMENT 

School of Humanities and Sciences 

STANFORD UNIVERSITY 

.öEULTEUJJ    jQ- 

•«■•MHaiB 



umiM.wiii   i u 

Unclassified 
Secuntv Classification 

DOCUMENT CONTROL DATA    R&D 
iSrcuriiy clatsillcmtion of IM», body of mbtlrmcl und Indmmlng mnnolallon muni be »nl»r»d w/ian f/ie ovmrmtl rtporl It rlatmilltd) 

i   ORIGINATING  ACTIVITY (Corpotalt author) 

Stanford University 

2«. REPOBT  SECURITY   Cl-ASSI FIC * T ION 

Unclassified 
26.   CROUP 

.'    REPORT   TITLE 

AN ALGORITHM TO REVEAL PROPERTIES OF FLOATING-POINT ARITHMETIC 

4   DESCRIPTIVE NOTES (Typ* of rapori and Inelualv data») 

  Technical Report, March 1971 
s   AUTHORISI (Firtl nama, middla Initial, Ian natna) 

Michael A. Malcolm 

«    REPORT  DATE 

March 1971 
7«.   TOTAL  NO.  OF PA6C« 7b.   NO.   OF  REFS 

1 
»a.   CONTRACT  OR  GR,AIMT NO 

ONR NOOO*£-67-A-0112-OO29 NR 0l+i|-2ll, 
b.   PROJEC T NO. ,       „ 

NSF GJ-408, 
AEG AT(0^-5) 526-PA30 

M.  ORIGINATOR'f REPORT  NUMBERItl 

STAN-CS-71-211 

•b. OTHER REPORT NOitl (Any olhar numbart that may ba aatlfnad 
Ihl» raporl) 

None 
10    DISTRIBUTION  STATEMENT 

Releasable without limitations on dissemination. 
/ 

H    SUPPLEMENTABV  NOTES 12.  SPONSORING MILITARY   ACTIVITV 

Mathematics Program 
Office of Naval Research 
Arlington, Virginia 22217 

13. ABSTRACT 

Two algorithms are presented in the form of Fortran subroutines. 
Each subroutine computes the radix and number of digits of the floating- 
point numbers and whether rounding or chopping is done by the machine on 
which it is run. The methods are shown to work on any "reasonable" 
floating-point computer. 

DD FOR».    I47Q 
I   NOV •«  I •»   /  W 

S/N   0101.807.6801 

(PAGE   1) 
Unclassified 

Securitv Claaalfication 

1 "  



Hl, i^UHjimiK  .1 .. in p„w 

i^^^'^^mmmmmmimmmmmim'm 

Unclassified 
Security CU»»tfic«Uon 

1 

Klv wonot 
LINK   ■ 

NOLI WT NOLK WT ROLK WT 

Floating-Point Arithmetic 
High-Level Languages 
Philosophy of Language Design 

DD .'^..1473 <BACK» 
(PAGE  2) 

Unclassified 
Security Claaaiflcatlon 

1 

-  ■ -  -   —M ■HMMMMilHai 



»»■■■HFT""'" 

ALGORITHMS TO REVEAL PROPERTIES OF FLOATING-POINT 

ARITHMETIC 

Michael A. kalcolm 

Abstract 

Two algorithms are presented in the form of Fortran subroutines. 

Each subroutine computes the radix and number of digits of the floating- 

point numbers and whether rounding or chopping is done by the machine 

on which it is run.    The methods are shown to work on any "reasonable" 

floating-point computer. 
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1.      Introduction 

A large percentage of the practical numerical algorithms in use today 

require some information about the actual floating-point number systeni on 

which they are implemented.    For example, a zero finder must use some sort 

of "machine epsilon" to determine when it has found a "zero".    An iterative 

improvement subroutine  in a linear system solver must stop iterating when 

the corrections no longer affect the answer.    Sane other algorithms which 

require this type of information are:    eigenvalue-eigenvector routines, 

ordinary differential equation solvers,  function minimizers,   etc. 

Usually this information is supplied to the algorithm in one of two 

ways:    It is either passed as a parameter or it is imbedded in 

one or more constants.    In the first case,  each user is faced with the 

problem of understanding emother confusing parameter in the calling sequence 

and he is likely to not know what to use for a "machine epsilon".    In the 

second case,  the "magic" numbers in a program are often not understood by 

people reading or translating the program.    When the subroutine is moved 

from one machine to another, these numbers are seldom changed to reflect 

the properties of the new machine — even when the author of the original 

program provides explicit comments in the program telling what the constants 

mean and how to change them. 

Since one of the original motivations for designing and implementing 

high-level languages was to allow a program written for one machine to 

run on other machines,  I think that this problem reflects a serious 

shortcoming of languages like Fortran and Algol.    Such languages should 

provide standard functions which return information pertinent to the machine. 
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However,  given these shortcomings,   it is reasonable to ask:    How can 

information about the number system of a computer be determined auto- 

matically?   That is,   can a subroutine written in Fortran compute this 

information? 

The Fortran subroutine given in the next section partially solves 

the problem for a large class of floating-point systans.    Another 

Fortran subroutine,  presented in Section 3,   solves the same problem 

for a more restricted set of floating-point  systems. 

2.      The Fortran Subroutine ENVRON 

For the remainder of this paper,  a floating-point number system    F 

will be characterized as follows:    Each number will have a radix    ß 

and a t-digit mantissa where   t > 1 .    Usually    ß    is    2 ,  8 ,  10 or 16 ,  but    ß 

will only be restricted to be a positive integer greater than    1 .    The 

exponent    e    is assumed to lie in the range 

m < e < M , 

where   ra < 0    and   M > t  .    Each nonzero    xeF    has the representation 

x = +   .d1d2...dt«ße    , 

where d..,...^,  are integers satisfying 

0 < d. < ß-1 ,  (i = 1,...,t)  . 

The number    0    belongs to   F .    No assumption is made about the representation 

of   0  ; however it is usually represented by 

0 = +   .OO.-.O'ß"1 

If x / 0 and d. £ 0 , th^n x is said to be normalized. All 

floating-point operations (e.g., addition and multiplication) are 

assumed to result in either   0    or a normalized floating-point number. 
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The machine will do either proper rounding or chopping (truncation). 

The    machine epsilon   mentioned in the previous section is the 

smallest positive floating-point number    €    such that    e®l > 1 , where 

©   denotes floating-point addition.    Thus,  one could compute    €    from 

ß    and    t  . 

The Fortran subroutine shown in Figure 1 can be called with the 

Fortran statement 

CALL ENVRON (IB,   IT,   IE) 

If the Fortran program is running on a machine with a floating-point 

number system of the type just described, then the actual parameters 

will be returned with the values 

IB = ß , 

IT = t  , 

JO,    if the machine does chopping, 
IR = / 

1 1    ,    if     .e machine does proper rounding. 

I 
1 SUBROUTINE ENVRON (BETA, T,RND) 
2 INTEGER BETA,   T,  RND 
5 RND  = 1 
U A = 2. 
5 B = 2. 
6 100 IF ((A+l.)-A.NE.l.)  GO TO 200 
7 A = 2.-X-A 
8 GO TO 100 
9 200 IF  (A+B.NE.A)   GO TO 500 

10 B = 2.*B 
11 GO TO 200 
12 300 BETA =  (A+B)   - A 
15 IF  (A+(BETA-l).Bq.A) RND = 0 
Ik T = 0 
15 A = 1 
16 hM T = T+l 
IT A = A^BETA 
18 IF ((A+1)-A.ffii.l)  GO TO 1+00 
19 RETURN 
20 END 

Figure 1 

akHHMit-^M 

, 



Suppose the machine on which ENVRCJN is executing has the 

floating-point system   F .    Then the consecutive integers 

can he represented exactly in   F  .    Integers larger than    ß     which 

can he represented exactly are 

ßVß, ßt+2ß, ß^aß, ..., ßt+1, ßt+V, ... 

Thus, the difference between neighboring floating-point numbers in the 

interval    [ßSß1*1]    is   ß .    The first part of ENVRON (lines h through 8) 

tests successive powers of   2   until a floating-point number    (A)     in 

this interval is found.    Lines 9 through 12 add successive powers of    2 

to   A   until the next floating-point number    (A-ß)    is found sind then   ß 

is computed by subtracting chese two numbers.    To determine whether rounding 

or chopping is being done (line 13),    ß-1    is added to   A .    Now,  since   A 

is in the interval 

the number   t    can be computed by 

t =   l_logß Aj    . 

However, possible inaccuracies in computing the logarithm are avoided by 

deteimining the power of   ß   required to shift the least significant digit 

of an integer out of the mantissa.    The smallest such exponent is equal 

to   t . 

The time required for ENVRON to execute is roughly proportional to 

logp ß    .    For any practical application, the execution time is negligible. 

It is important to note that the algorithm used in ENVRCN does not 

rely upon the use of guard digits in the floating-point additions. 
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The author believes this algorithm to be a very efficient way of 

computing   ß , t    and whether the floating-point system rounds or chops. 

5.      A Special Algorithm for the Cases    ß = 2,  h,  8,   10 and 16 

After using the technique described in the previous section to 

determine the number Ae [ß ,ß ) , the following trick can be used 

to determine both   ß   and whether roundintj or chopping is done: 

1. Set    B:=A+15    (2    is another floating-point representation). 

2. If   B=A ,  then    ß=l6   and chopping is done. 

3. If   B=A+8 , then   ß=8   and chopping is done. 

h. If   B=A+10 , then    ß=10   and chopping is done. 

5. If B=A+12 , then   ß=U   and chopping is done. 

6. If B=A+iU ,  then    ß=2   and chopping is done. 

7. If B=A+l6 , then rounding is done and   ß    is either   2, U, 8 or 16. 

8. If B=A+20 ,  then    ß=10    and rounding is done. 

The case   B=A+l6   can be resolved by 

1. Set    ^ =A+5. 

2. If   B=A ,  then    ß=l6 . 

5. If   B=A+U ,  then    ß=^ . 

h. If   B=A+6 ,  then    ß=2 . 

5. If   B=A+8 , then    ß=8 . 
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A Fortran subroutine incorporating this idea and using the same 

name and calling sequence as the subroutine given in Section 2 is shewn 

in Figure 2. Although the code is longer than the version in Figure 1, 

the execution time for this version is slightly smaller. 

SUBROUTINE ENVRON(BErA,T,RND) 
INTEGER BETA, T, RND 

C 
C THIS VERSION WORKS FOR MACHINES WITH BASE 2,  h,  8,   10 OR 16 
C 

RND = 0 
A = 2. 

10 IF ((A+l.)-A.NK.l.) GO TO 20 
A = 2.*A 
GO TO .10 

20 I = IFIX((A+15.)-A) + 1 
GO TO (50,1,1,1,1,1,1,1, kO, 1, 50,1,60,1,70,1, 80,1,1,1, 90), I 

1  STOP 
50 BETA = 16  - 

GO TO 100 
hO    BETA = 8 

GO TO 100 
.50 BETA = 10 

GO TO 100 
60 BETA = k 

GO TO 100 
70 BETA = 2 

GO TO 100 
80 RND = 1 

I = IFIX((A+5.)-A) + 1 
GO TO (82,1,1,1,81*, 1,86,1,88),I 

82 BETA = 16 
GO TO 100 

8^ BETA = h 
GO TO 100 

86 BETA = 2 
GO TO 100 

88 BETA = 8 
GO TO 100 

90 RND = 1 
BETA = 10 

100 T = 0 
A = 1 

110 T = T+l 
A = A^BETA 
IF ((A+l)-A.B^.l) GO TO 110 
RETURN 
END 

Figure 2 
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h.     Conclusions 

The algorithms given in Figures 1 and 2 will determine certain 

characteristics of the floating-point number system of any machine 

currently in use (at least those floating-point machines of which the 

author is aware). Specifically, the number base, number of digits and 

whether rounding or chopping is done, can be ccnrputed automatically. 

Programs and subroutines in general use, such as library routines, 

should avoid additional parameters in the calling sequence and magic 

constants in the code by using one of these subroutines for computing 

the floating-point environment of the current machine. This not only 

makes the code more readable but the portability of the program is 

greatly increased. The additional execution time required to call such 

a routine is insignificant compared to these advantages. 

Unfortunately, it is not possible to write a general subroutine to 

compute upper and lower bounds for the floating-point exponent 

(m and M) . If underflow and overflow conditions were handled in some 

uniform manner, it would be possible to do so. Sane programs make use 

of the values of ra and M . Thus it would be worthwhile for software 

manufacturers to consider ways of providing such information automatically. 

Automatic determination of properties of the integer arithmetic system 

would also be useful. A good universal random number generator could 

be written if it were possible to automatically determine the magnitude 

of the largest representablt integer. 

Other desirable environmental parameters are listed in a paper 

by Redish and Ward. 
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